Evaluation of Feed Efficiency in Cattle – The next revolution in animal breeding A NAMIBIAN APPROACH

## Reimo Schneider Agri Benchmark Global Forum – 10<sup>th</sup> June 2019



## OVERVIEW

- Why Feed Efficiency?
- Numbers and Definitions
- GenTecSol Company Overview
- GenTecSol Data Acquisition
- Feed Efficiency Results and Implementation
- GenTecSol Challenges





## GLOBAL CHALLENGE

# Agriculture's Challenge to 2050:

Double food production on same or less land to feed and fuel 10 billion with less labour, adopt more efficient and sustainable production methods and adapt to climate change

## NATIONAL CHALLENGE - NAMIBIA CURRENT SITUATION

According to independent reports, the rangeland condition on 92% of all land in Namibia is below normal, while a staggering 64% of the total country has a vegetation cover of less than 20% of the normal. ("Letter from the NLU/NECFU to the Minister of Agriculture – 8. April 2019")



Deviation of the 21 to 31 May 2019 period's vegetation index (NDVI) from the long-term average (since 2002)

© Namibia Rangelands

#### CHARLES DARWIN IN HIS "ORIGIN OF SPECIES"

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

## FEED CONVERSION – FEED TO GAIN

• On a feed:gain basis, beef cattle least efficient compared to other species

![](_page_5_Figure_3.jpeg)

- Poultry 250% improvement in efficiency since 1957 using genetics and feed composition
- Beef negligible improvement over last 30 years

![](_page_6_Picture_0.jpeg)

## **RESIDUAL FEED INTAKE (RFI)**

Residual Feed Intake (RFI) is:

- difference between an animal's <u>measured</u> feed intake and its expected feed requirements for maintenance and growth
- moderately heritable (26%-58%), selection will result in progeny that consume less feed for the same level of production

#### Improved RFI cattle reduce:

![](_page_6_Figure_6.jpeg)

## PROFITABILITY OF FEED EFFICIENCY OF ANIMALS

Feed = 70% of all production costs

![](_page_7_Figure_2.jpeg)

Gibb; Fox et al., 2001

## SOUTH DAKOTA - ON RANCH FEED EFFICIENCY TESTING

![](_page_8_Picture_1.jpeg)

#### Eagle Pass Ranches – South Dakota

- Started on farm testing in 2007
- Bulls in 2013 were 15% more efficient F:G 4.3:1
- In 2013, every female bred that finished in the top half of her feed intake contemporary group as a yearling entered cow herd - all other females entered recipient herd

Impact after 7 years selection:

- ~2 tons feed less each day
- U\$100,000+ annual feed savings

![](_page_8_Picture_9.jpeg)

#### GenTecSol – Evaluating Feed Efficiency in Cattle

- Privately owned and run RFI-Test-Station
- Launch March 2016
- Located on the farm Okawatuta near Hochfeld, Namibia
- First RFI-Station in Africa
- RFI-Station manufactured and monitored by GrowSafe Systems Ltd (Calgary, Canada).
- Up to now 1002 young registered bulls tested from 14 different Namibian stud breeders
  - 789 Brahmans
  - I2I Simmentalers
  - 77 Simbras

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_11.jpeg)

## FEED INTAKE MEASURMENT

- Animals RFID ear tagged
- RFID antenna in trough rim
- Trough on load cells 10 gm accuracy
- Feed measured <u>each second</u>
- For GenTecSol 99% of all feed can be allocated to an animal
- Real-time data transmission to GrowSafe in Calgary, Canada
- Software automatically analyses data

![](_page_10_Picture_8.jpeg)

#### **RFI-TRIAL SETUP AND PROCEDURE**

- Animals weight at the start, weekly and end of trial
- Information an animal registration ID, birth, breed and sex provided for RFI data analysis
- GenTecSol can test up to 96 animals per trial (8 troughs)
- Adaption period 21 days; Test period 70 days
- Internationally expected norm
- Cost per animal tested: N\$6500 (2019)

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_12_Picture_0.jpeg)

## **RESULTS AND EFFICIENCY TESTS**

- RFI is the true measurement of feed efficiency
- Old Feed Efficiency Tests (Phase C and Phase D) irrelevant
  - Inherently selected for larger animals, as metabolic requirements for maintenance and growth were neglected.
- When considering the Phase C Efficiency Test Procedure at GenTecSol:
  - Feed:Gain ratio of 3.71kg→11.66kg feed for 1kg animal weight gained
  - Across different breeds more variation within breed than amongst breeds
- Target: Breed animals with Feed:Gain ration of <4:1</p>

![](_page_13_Picture_0.jpeg)

## RFI RESULTS - EXAMPLE

- Raw data analysed by GrowSafe
  RFI Results received from GrowSafe for the group analysed:

  ADG Average Daily Gain (kg)
  RFI Residual Feed Intake (kg)

  Animals tested in Contemporary Groups no comparison across test groups possible yet.....
- Estimated Breeding Value (EBV) for RFI

| VID         | ADG (Kg) | RFI (Kg) | RFIRank |
|-------------|----------|----------|---------|
| 15-0075OKB  | 1.66     | 0.49     | 18      |
| 15-0012OKB  | 1.10     | -0.64    | 3       |
| 15-0014OKB  | 1.17     | 0.93     | 21      |
| 15-0171OKB  | 1.13     | -0.65    | 2       |
| 15-0109OKB  | 1.49     | 0.24     | 14      |
| 15-0106OKB  | 1.47     | -0.57    | 4       |
| 15-01810KB  | 1.43     | -0.85    | Ĩ       |
| 15-0135OKB  | 1.24     | 0.54     | 20      |
| 15-0025OKB  | 1.66     | 0.51     | 19      |
| I 5-0028OKB | 1.63     | -0.46    | 5       |
|             |          |          |         |
|             |          |          |         |
| Average:    | 1.39     | 0.00     |         |

RFI-Results GenTecSol March 2016

![](_page_14_Picture_0.jpeg)

## RFI – EBV (ESTIMATED BREEDING VALUE)

- RFI data accumulation in part of the Southern African Beef Genomic Project
- Raw data submitted to BREEPLAN (Australia Performance recording evaluation system) for eventual genetic Estimated Breeding Value (EBV) calculation for RFI
- Analysis at ABRI (Armadale, Australia) of Data to determine if we now already can publish an EBV for RFI.
- Scientists estimate that 1500 RFI data required to publish EBVs
- Brahmans is leading this process. This will be incorporated in an International Brahman Genetic Evaluation run.

| May 2019 Namibian Brahman BREEDPLAN EBVS                   |               |       |      |      |      |      |      |         |         |         |         |      |      |        |      |          |
|------------------------------------------------------------|---------------|-------|------|------|------|------|------|---------|---------|---------|---------|------|------|--------|------|----------|
| 1                                                          |               |       | 200  | 400  | 600  | Mat  |      |         | Days    |         | Eye     |      |      | Retail |      |          |
|                                                            | Gestation     | Birth | Day  | Day  | Day  | Cow  |      | Scrotal | to      | Carcase | Muscle  | Rib  | Rump | Beef   |      |          |
|                                                            | Length        | Wt.   | Wt   | Wt   | Wt   | Wt   | Milk | Size    | Calving | Wt      | Area    | Fat  | Fat  | Yield  | IMF  |          |
|                                                            | (days)        | (kg)  | (kg) | (kg) | (kg) | (kg) | (kg) | (cm)    | (days)  | (kg)    | (sq cm) | (mm) | (mm) | (%)    | (%)  | Docility |
| EBV                                                        | 12 <b>7</b> 0 | +0.9  | +18  | +28  | +35  | +33  | +2   | +1.5    | -       | +20     | +1.0    | +0.7 | +0.9 | 0.0    | -0.1 | 1976     |
| Acc                                                        | ( <b>#</b> )  | 81%   | 71%  | 69%  | 69%  | 62%  | 41%  | 50%     | -       | 56%     | 45%     | 54%  | 54%  | 46%    | 46%  |          |
| Breed Avg. EBVs for 2017 Born Calves Click for Percentiles |               |       |      |      |      |      |      |         |         |         |         |      |      |        |      |          |
| EBV                                                        | -0.8          | +1.6  | +16  | +24  | +31  | +32  | +3   | +0.7    | -0.4    | +17     | +0.3    | +0.1 | +0.1 | +0.0   | +0.0 | +0.9     |

EBVs for Okabra 15-001 – June 2019

![](_page_15_Picture_0.jpeg)

#### **BGP – MEAT QUALITY ASSESSMENT**

- Some bulls slaughtered at Meatco under the BGP programme to assess meat quality under the guidance of the meat laboratory at Irene, South Africa.
- Huge variations in meat tenderness were observed for all breeds, which would be another trait to focus on in future. <u>Especially with the focus on international niche markets</u>.

![](_page_15_Picture_4.jpeg)

#### **BREEDER ANIMAL SELECTION**

- In absence of EBVs presently, breeders select there next stud sires based on GrowSafe feedback on analysis
- Comparison only valid for a contemporary group of animals
- Graph RFI vs ADG

![](_page_16_Figure_4.jpeg)

![](_page_16_Picture_5.jpeg)

1,7

## GRAPH: RFI vs ADG

![](_page_17_Figure_1.jpeg)

Genetic Technology Solutions

#### GRAPH: RFI vs ADG

![](_page_18_Figure_1.jpeg)

GEN-TEC-SOL Genetic Solutions

## BREEDER SELECTION OF STUD SIRES

![](_page_19_Figure_1.jpeg)

Genetic Technology Solutions

## BREEDER SELECTION OF STUD SIRES – MARCH 2018

![](_page_20_Picture_1.jpeg)

Okabra Brahman bulls tested at GenTecSol in March 2018

OKB17-901 – Most Efficient in Group March 2018

## ANIMALS TESTED AT GENTECSOL

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

RFI Rank 7 I 5-0022WB F:G = 4.22:1 Wokuma Brahman RFI Rank 17 15-0020VVB F:G = 6.11:1 Wokuma Brahman

## FEEDLOT vs RANGLAND CONDITIONS

- Debate on RFI test conditions: Feedlot vs Rangeland conditions
- Dr. Paul Arthur (from the University of New South Wales at Armidale in Australia) is the internationally recognized expert on RFI having spent most of his research on this topic.
- High correlation between feedlot and rangeland conditions
- Animals efficiency in the feedlot is efficient on rangeland

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

#### ADDITIONAL DATA ON ANIMAL BEHAVIOUR

![](_page_23_Picture_1.jpeg)

- A lot of additional raw data available, that can be analysed
   → Not done at the moment
- Agressive vs Shy eater
- "Head down" and "In to Out" durations
- Force exerted on load cell

![](_page_23_Figure_6.jpeg)

#### GenTecSol CHALLENGES

- Privately owned no funding. Needs to be profitable.
- Number of animals per test
  - Cost N\$6500/animal (covers running, maintenance and investment cost)
  - Investment in future. No immediate return or compensation
  - Namibia is a developing country
- Drought
- Feed supply

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

![](_page_25_Picture_0.jpeg)

#### SUMMARY

- We are convinced that RFI is the next revolution in animal breeding
- RFI is the true measurement of feed efficiency
- The focus is on higher profitability of the livestock sector
- More efficient cattle have a direct simultaneous positive effect on the environment (methane)
- Estimated Breeding Value for RFI will be available soon
- Progressive breeders are already selecting on intermediate evaluation of data generated by GenTeSol

![](_page_26_Picture_0.jpeg)

# **THANK YOU**

Reimo Schneider reimo@okabra.com